Answer: The molecular formula is [tex]C_6H_{10}S_2[/tex]
Explanation:
We are given:
Mass of [tex]C[/tex] = 0.1605 g
Mass of [tex]H[/tex]= 0.0220 g
mass of [tex]S[/tex] = 0.1425 g
Step 1 : convert given masses into moles.
Moles of C =[tex]\frac{\text{ given mass of C}}{\text{ molar mass of C}}= \frac{0.1605g}{12g/mole}=0.0134moles[/tex]
Moles of H =[tex]\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{0.0220g}{1g/mole}=0.0220moles[/tex]
Moles of S =[tex]\frac{\text{ given mass of S}}{\text{ molar mass of S}}= \frac{0.1425g}{32g/mole}=0.0044moles[/tex]
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = [tex]\frac{0.0134}{0.0044}=3[/tex]
For H = [tex]\frac{0.0220}{0.0044}=5[/tex]
For S =[tex]\frac{0.0044}{0.0044}=1[/tex]
The ratio of C : H: S= 3: 5: 1
Hence the empirical formula is [tex]C_3H_5S[/tex]
The empirical weight of [tex]C_3H_5S[/tex] = 3(12)+5(1)+1(32)= 73g.
The molecular weight = 146 g/mole
Now we have to calculate the molecular formula.
[tex]n=\frac{\text{Molecular weight }}{\text{Equivalent weight}}=\frac{146}{73}=2[/tex]
The molecular formula will be=[tex]2\times C_3H_5S=C_6H_{10}S_2[/tex]