maeviso0 maeviso0
  • 12-12-2021
  • Mathematics
contestada

Prove that the equation x^2+px-1=0 for every p has two different solutions

Respuesta :

neetasingh9173
neetasingh9173 neetasingh9173
  • 12-12-2021

Answer:

To prove: The equation x2+px−1=0 has real and distinct roots for all real values of p.

Consider x2+px−1=0

Discriminant D=p2−4(1)(−1)=p2+4

We know p2≥0 for all values of p

⇒p2+4≥0 (since 4>0)

Therefore D≥0

Hence the equation x2+px−1=0 has real and distinct roots for all real values of p

Answer Link

Otras preguntas

Decimal point strategy question please help and fill in the blanks.
¿que es la migración y por que se da?
The measures of the angles of a triangle are shown in the figure below. Solve for x.
What is the expected freezing-point depression for a solution that contains 2.0 mol of KCI (electrolyte) dissolved in 1.0 kg of water? (K,- -1.86°C/m.) a.-7.44
some machine/items/gadget having only hardware​
Find the simplified product: 2 square root of 5x^3(-3 square root of 10x^2)
what is social participation why is it important for socialization​
A point of angle a cavity preparation involves how many surfaces?
How many bonds can a hydrogen atom form? O A. 3 O B. 1 O c. 4 O D. 2
Solve for x. 8x = 35