Respuesta :

[tex]\displaystyle 1+2+3+4+...+n= \frac{n(n+1)}{2} [/tex]

According to Gauss's formula, we can get:

[tex]\displaystyle 1+2+3+4+...+98= \frac{98(98+1)}{2}=49\cdot 99=4851[/tex]